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Abstract-The steady laminar natural-convection flow of air and water in a square heated cavity is 
calculated for increasingly large Rayleigh number. The flow is calculated by solving both the Navier- 
Stokes equations and the boundary-layer equations. The results are used to determine the proper scalings 
of the flow in the different asymptotic flow regions : vertical boundary layers, core region, comer region 
and horizontal boundary layers. In particular the scalings according to the Navier-Stokes equations agree 
with the asymptotic model for the core and vertical boundary layers as proposed by Gill [J. Fluid Me&. 

26,51%536 (1966)]. 

1. INTRODUCTION In order to verify Gill’s asymptotic theory, in the 

NA~RAL-CO~CTION Bows piay a role in different 
technical applications, like solar collectors, climate 
conditioning of rooms, isolation by double glazing, 
heat removal in micro electronics and cooling of 
nuclear reactors. Therefore natural-convection flows 
in rectangular geometries differentially heated over 
the vertical side have become a classical heat-transfer 
subject. The present study concentrates on the struc- 
ture of the steady laminar flow in a square cavity for 
increasingly large Rayleigh number. 

Actually the natural-convection problem is char- 
acterized by two numbers, the Rayleigh number and 
the Prandtl number. The proper scalings of the prob- 
lem are those scalings which make the scaled solution 
independent of the Rayleigh number if the Rayleigh 
number is increased to infinity. In the limit of an 
infinitely large Rayleigh number some terms dis- 
appear from the Navier-Stokes formulation, which 
now simplifies to an asymptotic description. The 
proper scalings are given by the asymptotic descrip- 
tion (for example the boundary-layer equations). In 
the cavity there are several asymptotic regions, each 
with its own proper scalings. 

Elder [I] and Gill [2] have formulated some ideas 
about the asymptotic equations, and hence the proper 
scalings, of the steady laminar flow in the cavity with 
an adiabatic floor and ceiling, that is heated from the 
vertical side. They distin~ish a core and boundary 
layers along the vertical walls. The core is thermally 
stratified and has a zero vertical flow. Gill assumes 
that for large Rayleigh numbers the Navier-Stokes 
equations reduce to boundary-layer equations. He 
largely simplified the boundary-layer equations and 
determined the stratification in such a way that the 
stream function at the edge of the boundary layer was 
symmetric with respect to the position of half the 
cavity height. 

present study the asymptotic structures, with the pro- 
per scalings, are derived by calculating the steady 
laminar Navier-Stokes flow in the two-Dimensions 
square cavity for air up to a Rayleigh number of lo9 
and for water up to Ru = 10”. Further, the thermal 
stratification as calculated in the large-liayleigh-num- 
ber Navier-Stokes solution is used as a boundary 
condition to solve the boundary-layer equations. 

2. STEADY NAVIER-STOKES AND 

BOUNDARY-LAYER EQUATIONS 

We consider the flow in a square cavity, that has a 
hot left vertical wall (tem~rat~e T,) and a cold right 
vertical wall (Tc). The floor and ceiling are both adia- 
batic (aTjay = 0). The height of the cavity is Ii. The 
flow is described by the NavierStokes equations 
under the Boussinesq approximation : 

au a~ 
-+-=co 
ax ay 

au au 
u~+vdy= -;g+v(g+$) 

(1) 

Here x and y are the horizontal and vertical coor- 
dinates, respectively, with the corresponding velocity 
components u and u ; T is the temperature ; p is the 
pressure ; p is the (constant) density; g is the gravi- 
tational acceleration ; /? is the coefficient of thermal 
expansion ; v is the molecular viscosity and Pr is the 
Prandtl number. 
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NOMENCLATURE 

9 gravitational acceleration 11 horizontal velocity component 
H height of cavity UC velocity scale for cavity, (gbA Tv) ’ ’ 
Nu Nusselt number for cavity, L’ vertical velocity component 

-(H/AT)(aT/o’.x), s horizontal coordinate 
NU averaged Nusselt number in cavity. ?‘ vertical coordinate. 

S’ 
Nu d&/H) 

II Greek symbols 

P pressure B coefficient of thermal expansion 

Pr Prandtl’number 
v molecular kinematic viscosity 

Ra Rayleigh number, gfiATH3 Pr/v’ i’ density 

s gradient of thermal stratification in stream function. u = - ;i*/f?_r, z’ = ii*/?.x 

cavity centre. (H/AT)(i;T/ay) ;< stream function at centre of cavity. 

T temperature 
AT characteristic temperature difference Subscripts 

for cavity, T,, - T, max maximum of a quantity 

T temperature of cold cavity wall I,’ wall condition 

T,, temperature of hot cavity wall -</.‘ environment condition. 

The variables are nondimensionalized with the 
length scale x,,, the velocity scale uO, the characteristic 
temperature T,,, and the characteristic temperature 
difference AT : 

The geometry and boundary conditions for the tem- 
perature determine length and temperature scales : 
x0 = H, T,, = T,, AT = T,- X,. The zero boundary 
condition for the velocity does not define a velocity 
scale. Therefore the velocity scale can be freely con- 
structed with the help of H and the coefficients g/JAT 
and V: a possible choice is u,, = (g/JATv)“‘. Because 
of the free choice of the velocity scale, the number of 

independent variables in equation (2) reduces by one, 

In this relation the Rayleigh number is defined as 
Ra = gflATH3Fr,iv2. Hence. the dimensionless Nav- 
ier-Stokes solution depends on only two charac- 
teristic numbers, namely the Rayleigh number and the 
Prandtl number. 

With the large-Rayleigh-number Navier-Stokes 
solutions in the square cavity it will be checked 
whether the hot vertical wall of the cavity can be 
considered as a part of a semi-infinite hot vertical 
plate, placed in a stagnant, stratified environment. 
More precisely, in the asymptotic limit of Ra -+ CCI, 
the Navier-Stokes description along the hot wall is 

expected to simplify to the boundary-layer equations 

ll;;+c;;: 1: !!A? 
_ Pr Sx? 

.Y = 0 : L4 = L’ = 0. T= T, 

.Y --t w : ~1 = 0, T = T, (ix), (4) 

Because for .X + cu the temperature converges to 
T,(y) and the convection and the diffusion terms 
vanish, the pressure in the boundary-layer equations 
(4) is only the hydrostatic pressure, which directly 
follows from the prescribed stratification : 

where p* is a fixed pressure level. The solution of the 
boundary-layer equations does not explicitly depend 
on the Rayleigh number if it is scaled according to 

-!-Ra’ ‘2, T-T,. p 

nil 
f;Ra-l*b, ~-.__, --.; Ra 1,’ 

AT pu, 

= ,f GRa”J. i. Pr (6) 

3. NUMERICAL METHOD 

In order to numerically determine the Navier 
Stokes solution, equations (1) arc discretized with the 
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well-known finite-volume method on a staggered grid. 
The convection terms are discretized with the central 
scheme. The domain is covered with a nonequidistant 
grid, having a concentration of grid lines along the 
walls. The u-grid points are positioned in the x-direc- 
tion according to 

i=O,l,..., i,,. (7) 

The same spacing is used for the v-grid points in the 
y-direction. The pressure is updated with the SIMPLE 
pressurecorrection method. A line Gauss-Seidel itera- 
tion is used to solve both the transport variables (u, 
v and T) and the pressure correction. Convergence of 
the Navier-Stokes solution becomes more difficult the 
larger the Rayleigh number is, and relaxation is 
required to prevent divergence. Part of the con- 
vergence problems are expected to be due to the cal- 
culation of the pressure in the boundary layers along 
the vertical walls. In contrast with the Navier-Stokes 
equations, the boundary-layer equations do not have 
a transport equation for the normal velocity com- 
ponent U, but the u-component directly follows from 
the continuity equation. This boundary-layer feature 
is not reflected by the Navier-Stokes solver, which 
determines a pressure correction via the continuity 
equation and which determines the u-component via 
the u-transport equation. 

The boundary-layer equations are parabolic as long 
as the environment is isothermal or unstably stratified 
(dT,/dy < 0). Because of this parabolic character, it 
is more suitable to modify the position of some of 
the grid points used to discretize the elliptic Navier- 
Stokes equations when the boundary-layer equations 
are solved. To discretize the boundary-layer equations 
we take the same grid points for v as in the dis- 
cretization of the Navier-Stokes equations, but the 
grid points for T are moved to the v-grid points and 
the grid points for u are only staggered with respect 
to the v-grid points in the x-direction. Further, a first- 
order upwind discretization is used for the convection 
in the y-direction. In this way only one sweep from 
the beginning to the end of the domain (in which the 
updating process at a line is repeated until a con- 
vergence criterion is satisfied) is required to solve the 
parabolic boundary-layer equations. If the tem- 
perature stratification is stable (dr,/dy > 0), regions 
of flow reversal and temperature deficit appear, imply- 
ing that the boundary-layer equations lose their para- 
bolic character and become elliptic. Due to this elliptic 
character, even on the modified grid repeated sweeps 
have to be made. The flow reversal, however, is small 
and the equations are still nearly parabolic. Therefore 
also for the stable stratification the line-updating pro- 
cess in each sweep on the modified grid is repeated 
until convergence at that line is reached. This contrasts 
the Navier-Stokes solver, in which only one line- 
updating is made in each sweep. 

4. GILL’S ASYMPTOTIC FORMULATION 

Since Prandtl [3] derived the boundary-layer 
equations, and actually introduced the mathematical 
technique of asymptotic series (singular perturbation 
theory) to solve flow problems, a large literature on 
this subject has been established. The asymptotic 
theory searches for the proper scalings in the asymptotic 
limit of an infinitely large Rayleigh number, and it 
derives the corresponding asymptotic equations. These 
scalings can be different in different regions, and the 
asymptotic solutions have to be matched according to 
a certain matching principle. The asymptotic solution 
holds exactly in the limit Ra + 00, and can be used as 
a good approximation of the Navier-Stokes solution 
for a large, but finite, Rayleigh number. 

The asymptotic theory for the natural-convection 
flow in cavities is still in development. Ostrach [4, 51 
has given reviews. Two basic configurations have been 
considered in the literature, the rectangular cavity and 
the horizontal cylinder, for two basic modes, heating 
from the vertical side and heating from below. For 
large Rayleigh numbers there seems to be a core with 
boundary layers along the heated walls. There has 
been some doubt on the right structure of the core 
flow ; Batchelor [6] suggested an isothermal core with 
constant vorticity for the configuration with heating 
from the vertical side. At the moment it seems (exper- 
iments Elder [l], theoretical considerations Ostrach 
and Hantman [7], and different numerical studies 
including the present one) that the core becomes iso- 
thermal and rotating if the cavity is heated from 
below, whereas it becomes thermally stratified and 
almost stagnant with horizontal streamlines if the 
cavity is heated from the vertical side. 

The vertical boundary layers and the core in rec- 
tangular cavities have been calculated by Gill [2] for 
infinitely large Rayleigh and Prandtl numbers. He 
assumes that the core is stratified and has horizontal 
streamlines. Along the vertical walls Gill approxi- 
mately solves the boundary-layer equations (4) by 
linearizing them. After linearization the boundary- 
layer equations reduce to an ordinary differential 
equation in x, in which the y-coordinate appears as a 
parameter only. The core flow and boundary-layer 
flow are matched by the condition that the tem- 
perature and the normal velocity at the edge of the 
boundary layer are equal to the temperature and vel- 
ocity in the core. The solution of equations (l), under 
the given boundary conditions, is centro-symmetric 
with respect to the centre of the cavity : 

T(x,y) - T(H/2. H/2) = T(H/2, H/2)- T(H-x. H-y) 

u(x,y)= -u(H-x, H-y). (8) 

Because of the assumption that the streamlines are 
horizontal in the core, it also follows that the normal 
velocity at the edge of the boundary layer along both 
vertical walls is anti-symmetric around y = H/2. This 
symmetry condition dictates how the asymptotic flow 
in the core and in the boundary layer interact: the 
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stratification in the core has to be such that the normal 
velocity at the outer edge of the boundary layer is 
anti-symmetric. Using the symmetry conditions the 
linearized boundary-layer solution and the core solu- 
tion can be determined up to a constant. Gill deter- 
mines this constant by assuming that the vertical 
entrainment of mass at the ceiling (y = H) equals 
zero. A modified procedure to determine this constant 
has been proposed by Bejan [8]. He applies the con- 
dition that the vertical heat flux through the ceiling is 
zero. The vertical flux consists of a convection and a 
diffusion contribution, which are calculated with 
Gill’s approximation of the boundary-layer solution. 
The constant turns out to be a coefficient that depends 
on the Rayleigh number ; the coefficient converges to 
Gill’s constant in the limit Ra + x’. From an asymp- 

totic point of view one might doubt the significance 
of Bejan’s correction. The boundary-layer solution is 
used to calculate the y-diffusion, which actually was 
neglected when the boundary-layer equations were 
derived from the Navier-Stokes equations. Therefore 
Bejan’s correction on Gill’s constant is a second-order 
asymptotic effect, which can only bc expected to be 
the right second-order correction if it has been deter- 
mined in combination with second-order boundary- 
layer equations and core effects. Graebel [9] extended 
Gill’s analysis to variable Prandtl numbers. Blythe et 
al. [lo] repeated Gill’s analysis (only for the limit 
Pr + m) : instead of linearizing the boundary-layer 
equations, they accurately solved Gill’s asymptotic 
formulation with a numerical method. 

Gill’s asymptotic structure will be verified by com- 
parison with large-Rayleigh-number Navier-Stokes 
solutions. In the sequel the mentioned approximation. 
including Graebel’s finite-Prandtl-number correction, 
will be referred to as the uppro.uimation of Gill’s for- 
mulation and the numerical solution of Blythe et nl. 
will be referred to as the esuct solution of Gill’s 
formulation. 

5. NAVIER-STOKES SOLUTIONS 

Steady, laminar Navier-Stokes solutions in the cav- 
ity are determined for air (Pr = 0.71) up to Ra = 10’ 
and for water (Pr = 7.0) up to Ra = 10”. Benchmark 
numerical results were obtained by de Vahl Davis [ 111 
for air up to Ra = 106. Recently Le Quere [12] 

Table 1, Accuracy of the solution for air at 

Study 

Present 

Grid s 

15x 15 0.9780 
30 x 30 0.9367 
60 x 60 0.9 190 

120x 120 0.9144 

de Vahl Davis _ 

Le Qukrt- 

revisited these benchmark results, and he also added 
benchmark results for two new cases : air at Ra = 10’ 
and air at Ra = 108. To discretize the equations de 
Vahl Davis used a finite-difference method and Le 
Quere used a spectral method. 

Most of the present calculations were made on a 
60 x 60 grid. For Rayleigh numbers up to IO4 an equi- 
distant grid was used, whereas for larger Rayleigh 
numbers the nonequidistant grid (7) was used. In 
order to verify the accuracy for larger Rayleigh num- 

bers, we refined the grid up to 120 x 120 points for air 
at Ra = 10h and for air at Ra = 10’. Table 1 sum- 
marizes the results at Ra = lo6 for several quantities : 
the averaged heat transfer through the hot vertical 
wall (Nu. in which Nu is the Nusselt number defined 
by -(H/An(r?T/iis),,.). the gradient of the thermal 
stratification in the centre (S = (H/A7JarjZr), the 
vertical velocity maximum at half the cavity height 
(z’,;,,) and the horizontal velocity maximum at half 
the cavity width (zc,,). The results, in particular at 
the finest grids, are in very good agreement with the 
benchmark results of de Vahl Davis [ll]. but the 
agreement with the revised benchmark results of Lc 

Quere [12] is even better. Table 2 rehnes the grid for 

Ra = 10’ and also compares different discretizations 
for the convection (central, hybrid. first-order 
upwind). By strong grid refinement L,e Qucre can 
convince that his solution at Ru = 10’ is indeed very 
accurate and that it can be used as a benchmark solu- 
tion. He does not give a benchmark value for the 
stratification. Therefore we use our value at the 
120 x 120 grid with the central scheme as a reference 
value for S: changes in S on the refined grids are 
smallest with the central scheme. suggesting that this 
scheme has the highest accuracy. Differences between 
the schemes are small, with exception of the strati- 
fication: the hybrid scheme and the upwind scheme 
considerably underpredict the stratification at the 
coarser grids. Comparison with the benchmark solu- 
tion at Ru = lo* shows that our values for the wall- 
heat transfer and for the vertical velocity maximum 
at the finest grids are very accurate. The accuracy of 
our horizontal velocity maximum is somewhat 
smaller. Relaxation is required to prevent divergence 
of the numerical iteration process : convergence 
becomes slower in the sequence upwind scheme. 
hybrid scheme and central scheme For air at 
Ru = IO4 a converged solution with the central 

Nu Ra ’ 

0.2773 
0.2782 
0.2789 
0.2790 

0.2633 0.8145 
0.2621 0.8144 

0.2783 0.2603 0.8121 
0.2791 0.3618 0.8146 
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Table 2. Accuracy of the solution for air at Ra = 10’ 

Scheme Grid 

%m %l,x 

s Nu Ra- ‘I4 t/(gBATH) (gbATv) “j 

15x 15 0.9336 

Central 
30x30 0.9908 
60x60 0.9942 

120 x 120 0.9943 

15x 15 0.7732 
Hybrid 30x30 0.9297 

60x60 0.9714 
120 x 120 0.9808 

15x 15 0.5976 
Upwind 30x30 0.8369 

60x60 0.9121 
120 x 120 0.9502 

Le Qutrt - 

scheme could no longer be obtained and the hybrid 

scheme had to be used. 
Streamlines of the Navier-Stokes solution for air 

at increasing Rayleigh number are shown in Fig. 1 (a). 
Streamlines are isolines of the stream function $, 
which is defined as u = - a$/ay, v = a$jax and I,+ = 0 

Ra = lo3 

Ra=106 Ra=lO* 

0.3134 0.3790 
0.2988 0.2827 
0.3014 0.2657 
0.3020 0.2646 

0.2971 0.3712 
0.2937 0.2836 
0.2989 0.2667 
0.3010 0.2649 

0.2995 0.3557 
0.3014 0.2767 
0.3035 0.2633 
0.3034 0.2633 

0.3023 0.2637 

0.6446 
0.7436 
0.7421 
0.8231 

0.9209 
0.7670 
0.7776 
0.7937 

1.111 
0.9139 
0.8619 
0.8321 

0.8714 

at the wall. Special points in the streamline patterns 
are the stagnant points, that is, the points where 
u = v = 0. As indicated in Fig. l(b), a stagnant point 
can either be a centre or a saddle. The stagnant points 
define the topological structure of the flow; the 
streamlines through the saddles give the dividing 

Ra = lo5 

(a) 
FIG. 1. Structure of the Navier-Stokes solution for increasing Rayleigh number; (a) streamlines for air, 

(b) topology. 
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Ra < ~5x10~ 

5X105 C Ra < 5X106 

CENTRE 

5~ lo4 < Ra < 5X lo5 

\ 

. \ (iv) 

(iii) 

(9 L, (ii) 

. . . 

(b) 

Ra > 5X1@ 

FIG. 1 .-Continued. 

streamlines of the flow. With the help of the stagnant 
points, the following ranges can be distinguished (the 
streamlines are centro-symmetric with respect to 
x = y = H/2) : 

I. Ra < 5 x IO“; one centre at .Y = y = H/2, with 
unicellular, clockwise rotating flow. 

II. 5 x IO4 < Ra < 5 x 105; the centre has split up in 
a saddle. at x = y = H/2, and two new centres, 
forming two clockwise rotating rolls. 

III. 5 x 10’ < Ra < 5 x 106, the saddle at x = _v = 
H/2 has further split up in a centre and two new 
saddles, giving a total of three clockwise rotating 

rolls. 
IV. Ra > 5 x 106; a centre-saddle combination is for- 

med in the left upper and right lower corner, 
with fast clockwise rotating fluid (vortices). This 
corner vortex does appear only for air. It does 
not appear for water up to Ra = lo”, which was 
the largest Rayleigh number we calculated. 

As indicated in Fig. I(b), four asymptotic regions 
can be distinguished in the last streamline pattern : (i) 
vertical boundary layer along the heated wall, (ii) core 
region, (iii) corner region, (iv) horizontal layer. 

6. SOLUTION OF THE BOUNDARY-LAYER 
EQUATIONS 

Figure 2 shows the isotherms in the Navier-Stokes 
solution for air at increasing Rayleigh number. For 
very small Rayleigh numbers there is only conduction, 
giving a temperature which only depends on the .Y- 
coordinate (S = 0). For increasing Rayleigh number 
the temperature in the core of the cavity becomes 
stratified, that is, the temperature depends only on the 
vertical coordinate y. The stratification at half the 

cavity width is shown in Figs. 3(a) and (b), for air 
and water, respectively. The stratification at the centre 
(S) is shown in Fig. 3(c). Part of the curve in Fig. 3(c) 
is broken to indicate that the steady solution for these 
large Rayleigh numbers is physically unstable (see, 
for example, Paolucci and Chenoweth [ 131). Figure 3 
shows that for Ra + co the core stratification con- 
verges to a limit state ; the limit stratification for air 
is roughly twice the limit stratification for water. 

With the limit stratification of the Navier--Stokes 
solution prescribed as a boundary condition at the 
outer edge, the boundary-layer equations (4) were 
solved for air (actually the stratification for Ra = 1 Ox 
was taken). For y JO the solution of the boundary- 
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Ra = 10’ 

Ra = lo6 

Ra = 10’ 

Ra = 10’ 

FIG. 2. Isotherms in the Navier-Stokes solution for increasing Rayleigh number (air). 

layer equations simplifies to Ostrach’s [ 141 similarity 
solution. This solution was used as a boundary con- 
dition at the leading edge. As shown in the previous 
section, regions with flow reversal and temperature 
deficit are found in the outer part of the boundary 
layer if the environment is stably stratified. This 
implies also that a boundary condition is required at 
the end of the boundary layer at y = H. Because the 
solution at y = H is not known beforehand, the cal- 
culation was extended toy > H, using the outer-edge 
temperature T,(y) = T,(H) in this range. For y >> H 
the boundary layer returns to Ostrach’s similarity 
solution. The outer edge of the boundary layer in the 
computational domain was taken far enough to have 
a negligible effect on the development of the boundary 
layer (namely at (x/H) Ra ‘F = 40). Forty grid points 
were used in the y-range 0 < y ,< H. The same number 
of grid points was used in the x-direction. Calculations 
on 80 x 80 grids gave only very small changes. 

The wall-heat transfer in the boundary-layer solu- 
tion and in the Navier-Stokes solution for increasing 
Rayleigh number are compared in Fig. 4(a) for air : 
the wall-heat transfer in the Navier-Stokes solution 
converges to the value of the boundary-layer solution 
in the limit Ra + 00. In particular in Fig. 4(b) it is 
checked that the wall-heat transfer - (~T/&x)~, in the 

Navier-Stokes solution for large Rayleigh numbers 
scales with (AT/H)Ra’14, which agrees with the bound- 
ary-layer scaling (6). Finite-Rayleigh-number effects 
are restricted to the corners at y J 0 and at y t H. If 
the Rayleigh number is increased, the position of the 
maximum in the Navier-Stokes wall-heat transfer 
moves to y/H = 0, and for small y values beyond 
this maximum the wall-heat transfer follows Ostrach’s 
similarity solution, 

lim Nu Ra- ‘/4 
Rll-ecv 

= C*(y/H)-‘14 lim 
T, - T(H/2,0) 5’4 

AT > 
(9) Ra-m 

with C* = 0.387 for air and 0.459 for water. Here the 
infinite-Rayleigh-number limit of (T,,- T(H/2,O))/AT 
is found by extrapolation of the results for the largest 
calculated Rayleigh numbers to infinity, which gives 
about 0.86 for air and about 0.91 for water. 

In Fig. S(a) the stream function at the outer edge 
of the boundary-layer solution for air is compared 
with the Navier-Stokes stream function at x = H/2 
for increasing Rayleigh number. The convergence of 
the Navier-Stokes stream function to the boundary- 
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(4 

FIG. 3. Stratification in the core; (a) at x: = H/2 for air, 
(b) at x = H/2 for water, {c) at the centre. 

layer solution is only clear for y-values up to H/2. In 
p~ticular in Fig. .5(b) it is checked that the Navier- 
Stokes stream function at the centre ($,) scales 
with uoHRa-“‘*, which agrees with the boundary- 
layer scaling (6) (see also next section). For y > H/2 
the deviation of the boundary-layer solution from 
the Navier-Stokes solution is large and the stream 
function in the boundary-layer solution is not sym- 
metric around y = H/2. In order to verify the sen- 
sitivity of the stream function to the stratification, the 
boundary-layer equations were solved for different 
stratifications as sketched in Fig. 6(a) ; both the line- 
arized Ra = 10’ Navier-Stokes stratification and the 
linearized stratification with a sinus perturbation were 
used. Changing the stratification has a small influence 
on the wall-heat transfer (Fig. 6(b)), but it has a large 
influence on the stream function for ,v > H,,2 (Fig. 

0.40 T- 

G 
z 

0.25 

0.10 L- 
lQC 

;‘44 
IO” lo” Ro IOf2 

@I 

FIG. 4. Wall-heat transfer; (af for air, (b) averaged watl-heat 
transfer. 

- boundary-Iayer “9. 
Nauier-Stokes: 

b---4 Ra= Id 

- _ approximation Gill 

(a) 
1.&---- --_.--.- 

(b) 
Fro. 5. Stream function; (a) at x = N/I! for air, (b) at the 

centre. 
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T-r, 
AT 

Navier4ltokes Ra = 10' 

.-. sinus perturbation 

boundary-layer tq. with: 
-- Ra=lO’ N.S. stratification 

sinus stratification 

i 

I 0-o Navicr-Stokes l?a = 10 

bovndary-layer eq. with: 
- Rn- 10’ N.S. stratification 
- - iincarized sttdificatioo 

sinus stratification 

sl 
1.5 

(cl 
FIG. 6. Sensitivity of the ~unda~“layer solution for air to 
the stratification; (a) core temperatures checked, (b) wall- 

heat transfer, (c) stream function at the edge. 

6(c)). The linearized stratification removes the devia- 
tion in the stream function with the Navier-Stokes 
solution close to the ceiling, and the sinus perturbation 
makes the stream function practically symmetric. The 
large sensitivity of the stream function to the tem- 
perature stratification suggests that the interaction 
between the core solution and the boundary-layer 
solution has to be taken into account. This is precisely 
what is done in the as~ptotic description of Gill : as 
described in Section 4, he uses the interaction principle 
of symmetry to couple the stratification to the bound- 
ary-layer equations. Gill does not prescribe a fixed 
stratification, but the stratification is part of the cal- 
culation. It remains to be checked that applying the 
symmetry interaction in the present boundary-layer 
approach (for example by setting up an iteration pro- 

Table 3. Comparison of the asymptotic behaviour 
(a) Air 

Formulation 

Navier-Stokes 0.99 0.30 0.66 
Boundary-layer equations 0.99 0.31 0.67 
Gill-exact 0.52 0.32 0.74 
Gill-appro~mation 0.49 0.36 1.0 
Similarity solution 0.00 0.22 1.17 

(b) Water 

Formulation 

Navier-Stokes 0.55 0.32 0.16 

Boundary-layer equations - - - Gill-exact 0.52 0.32 0.16 
Gill-approximation 0.42 0.36 0.21 
Similarity solution 0.00 0.26 0.65 

cess that corrects the prescribed strati~cation until a 
symmetric stream function at the outer edge of the 
boundary-layer solution is found) gives a stratifica- 
tion which is close to the calculated large-Rayleigh- 
number Navier-Stokes limit. 

Table 3 compares some asymptotic limits in the 
Navier-Stokes solution with the boundary-layer solu- 
tion, Gill’s formulation and Ostrach’s similarity solu- 
tion. The boundary-layer solution is found by pre- 
scription of the Navier-Stokes strati~cation, Gill’s 
formulation uses interaction to calculate the strati- 
fication, and Ostrach’s similarity solution applies a 
zero stratification to the boundary-layer equations. 
The fixed outer-edge temperature in the similarity 
solution was chosen as (Th+ T,)/2. The agreement of 
the wall-heat transfer and the stream function at the 
centre between the Navier-Stokes solution and the 
boundary-layer solution is good, as just discussed. 
The agreement between the exact solution of Gill’s 
formulation and the Navier-Stokes solution is very 
good for water, but for air a significant deviation is 
found. The reason is that the Prandtl number for 
water is larger than for air, and therefore closer 
to the infinite-Prandtl-number limit for which the 
exact solution of Gill’s formulation is available. As 
expected, the deviation from the Navier-Stokes 
solution is larger for the approximation of Gill’s 
formulation than for the exact solution of Gill’s 
formulation. For water the accuracy of Gill’s ap- 
pro~tion is still reasonable, but for air the deviation 
is large. This shows that Graebel’s finite-prandtl- 
number corrections (which are included in the 
approximation of Gill’s formulation in Table 3) are 
not very accurate for air. Finally, the averaged wall- 
heat transfer in Ostrach’s simil~ity solution is much 
too small due to the negligence of the stratification and 
the fixing of the outer-edge temperature at ( Th + T,)/2. 
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7. FOUR ASYMPTOTIC STRUCTURES 

In the previous section the asymptotic structure of 
the Navier-Stokes solution in the vertical boundary 
layer and in the core was shown to satisfy Gill’s 
asymptotic description. In this section some further 
details for the vertical boundary layer and the core 
are given and the structure of the two other asymptotic 
regions, namely the corner and the horizontal bound- 
ary layer, is described. The proper scalings as cal- 
culated in the large-Rayleigh-number Navier-Stokes 

solution are summarized in Table 4. 

Stokes solution should scale with HRa I”, uORu’ ” 

and AT, respectively, in the limit Ro + xi. The vel- 
ocity scale u,(Ra/Pr) I.” = (B~ATH)“” is known as 

the buoyant velocity scale. The correctness of these 

scalings is verified for the r-profile at .I‘ = HI? for ail- 

in Fig. 7(a). The velocity maximum is shown in Fig. 
7(b). For small y values the velocity maximum follows 
Ostrach’s similarity solution 

I. 1. Vertical boundary layer along the heated wall 

The presence of the horizontal walls is felt by the 

(loi 

vertical boundary layer via the temperature strati- 
fication in the core. Firstly the stable stratification 
gives small regions with flow reversal and temperature 
deficit in the outer part of the boundary layer. The 
flow reversal changes the parabolic character of the 
boundary-layer solution in an isothermal environ- 
ment into an elliptic character. Secondly the stable 
stratification results in mass being moved into the 
hot boundary layer at heights smaller than HZ, and 
moved out from the boundary layer at larger heights. 
In Fig. 4 it was shown that the wall-heat transfer in 
the Navier-Stokes solution for Ra --t m satisfies the 
boundary-layer equations. In analogy, according to 
the boundary-layer scalings, the x-coordinate. the 
vertical velocity, and the temperature in the Navier- 

with C* = 0.555 for air and 0.263 for water. This 
similarity solution, which assumes an isothermal 

environment, only moves mass into the boundary 
layer and the velocity maximum increases with 
increasing y. No mass is moved out through the outer 
edge of the boundary-layer as occurs in the cast of a 
stratified environment for J’ > H. Hence, due to the 
stratification, the velocity maximum deviates from 
Ostrach’s solution for larger ~5 and the velocity 

maximum is largest at x - H/2. Reaching .viH = I. 

the maximum in the boundary-layer solution devi- 
ates from the Navier-Stokes solution ; the Navier 
Stokes solution smoothly falls back to zero. whereas 
the boundary-layer solution hits the ceiling with 
a finite velocity maximum. The minimum of the vel- 
ocity, that is. the maximum of the flow reversal. is 

Table 4. Navier -Stokes scalings for the steady laminar flow 

Region Quantity Scaling 

II (&‘ATI’)’ ‘Ru ’ ” 

I‘ \‘(.MATff) 

Vertical boundary layer T AT 

.x HRrr-’ -I 
? H 

u (,qPATv)’ ‘Ro ’ ” 

Core 

1’ 

T 

Corner 

Horizontal layer 

Exainples 

Quantity Air Water 

Gl,, 
= 0.089 

~(,&ATH) 
0.27 

.I‘, ,n3\ 

HRcr “’ 
= 1.2 I.4 

%Rn ’ ’ = 0.30 0.32 

*< 
= 

u,,H Ra ’ ” 
0.66 0.16 

.s = 0.99 0.55 

Nu,,, Ru ’ ’ = 0. I9 0.24 

J‘niUrn,X = 
HRa “’ 

3.8 3.9 

&,a, 
= 

(g/lATv)’ ’ 
0.82 0.24 

l’mmx 
= HRn-‘,‘h 2.3 I .6 
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Nsvier-Stoker: 

- - approximation Gill 
- boundary-layer c 

- boundary-layer eq. 

Navicr-Stokes: 

04 

Navier-Stokes: 
b-b Ra=lO’ 
x--x R,l= 106 
o---o Rn = IO’ 
0-o Re = 108 

- - approximation Gill 

5. 

(d) 

FIG. 7. Vertical boundary layer for air; (a) vertical velocity at y = H/2, (b) maximum in the vertical 
velocity, (c) minimum in the vertical velocity, (d) temperature at y = H/2. 

43 

10 

shown in Fig. 7(c) for air. Deviations in the minimum 
between the boundary-layer solution and the Navier- 
Stokes solutions will be discussed in Section 7.3. The 
scaling of the temperature profile at y = H/2 for air is 
verified in Fig. 7(d). 

The Navier-Stokes solutions show that for increas- 
ing Rayleigh number the temperature becomes strati- 
fied in the core and the velocities in the core become 
much smaller compared to the velocities in the vertical 
boundary layers. Moreover the streamlines become 
horizontal in the core. Therefore the core velocities 
can be fitted to 

lim Et Ram” a> -l/6 
f&l-m zfg 

lim VtRa-6 b>a. 
&n-rrnUg (11) 

The length scale in the core is expected to be H; the 
horizontal velocity can transport the mass from the 
hot vertical boundary layer, which is proportional 
to uO Ra’16 x HRa- ‘14, to the cold boundary layer if 
a = l/12. Integration of the horizontal velocities at 
x = H/2 gives the stream function of Fig. 5(a). The 
scaling with a = l/12 for the horizontal velocity in the 
core agrees with the boundary-layer scaling for the 
normal velocity (6) and is checked in Fig. S(a) for 

0.75 

(4 

0.3 
I 

Navier-Stokes: 

0.0 
-10. -5. Q/H - 1) Ra”“” 

(b) 
FIG. 8. Horizontal velocity for water at x = H/2; (a) in the 

core, (b) in the horizontal layer. 
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water. For increasing Rayleigh number the horizontal 
boundary layers along the horizontal walls become 
thinner and the core becomes larger. Indeed Fig, S(a) 
shows that for increasing Rayleigh number an increas- 
ing part of the horizontal velocity falls on a single 
curve that scales with the velocity unRd "". The fig- 
ure also shows that the scaled horizontal velocity in 
the core. (u/uO) Ka ‘,‘I ‘. becomes infinitely large at 
y/H1 0 and y/H t 1 for increasing Rayleigh number. 
Such a growth without bound is also found in the 

normal velocity at the leading edge of Ostrach’s simi- 
larity solution. The vertical core velocities are so small 
that the exponent h in equations (11) cannot accu- 
rately be determined from the calculated Navier.- 
Stokes solutions. Nevertheless, it is clear that for large 
Rayleigh numbers we lind 11 << u in the core. The core 
region for air seems to show the same scaling for the 
horizontal velocity as for water ; for air, however. even 
the largest calculated Rayleigh numbers still give a 
rather thick horizontal boundary layer which makes 
the verification of the scaling for the horizontal core 
velocity less clear than for water. 

7.3. CorBer region 
In the left upper corner the verticaliy rising bound- 

ary layer hits the ceiling with a finite velocity 
maximum. In this region the flow can no longer be 
described with boundary-layer equations. No clear 
scalings can be derived from the large-Rayleigh-num- 
ber Navier-Stokes solution, implying that full Nav- 
ier-Stokes equations have to be used in this corner 
region. Pressure forces become important here and 
cause the boundary layer to change direction and 
continue as a horizontal layer. Because for large Ray- 
leigh numbers the vertical boundary layers and the 

0.01 0.00 -0.01 

FIG. 9. Pressure, after subtraction of the hydrostatic pressure, 
for air at Ra = lo*; isobars in the cavity and pressure dis- 

tribution along the ceiling and along the hot wall. 

core are described by the boundary-layer equations 
(4), the pressure plays only a passive role in these 
regions and reduces to the hydrostatic pressure (5) in 
the limit Ru -+ co, giving horizontal isobars. Figure Y 
shows that the pressure becomes active in the left 
upper corner (and the right lower corner) : for air at 
Rtr = IO’we have plotted the isobars aftfcr subtraction 
of the hydrostatic pressure with respect to the core 
stratilication (T,_ (_I,) is evaluated at half the cnvit! 

width in equation (5)). For air a vortex in the strcam- 
line pattern (Fig. l(a)) characterizes the bending oi‘ 
the vertical layer to the horizontal layer in the corner. 
The influence of the vortex is also clearly seen in the 

minimum velocity for air in Fig. 7(c). In the Navicr 
Stokes solution for Rcr = 10’ and Ra = 10“ the vortex 
is still absent, and the minimum velocity is rclatitcly 

close to the boundary-layer solution. With the appear- 
ance ofthe vortex at Ra = IO’. a new peak arises in the 
velocity minimum. It is expected that for increasing 
Rayleigh number the influence of the vortex Jis- 
appears and that the Navier-Stokes solution comes 
closer to the boundary-layer solution. The influence 
of the vortex on the minimum. however. is still large 
at Ra = 10’. Figure 4(a) shows that the influence of 
the left lower corner (the starting corner of the vertical 
boundary layer) on the wall-heat transfer quickly dis- 
appears with increasing Rayleigh number : the posi- 
tion _t’/N of the maximum in the wall-heat transfer 
comes closer to the floor. More precisely, its position I’ 
turns out to scale with HRa- “‘C = (~~A~~~~~‘~ ’ ’ 1. 
This scaling shows that the size of the cavity (H t dots 
not influence the flow structure at the starting corner. 

7.4. Horimntul la_:er 
The horizontal boundary layer along the adiabatic 

horizontal wall is of a different type than the vertical 
bt~undary layer : the horizontal boundary layer is not. 
described by the boundary-layer equations (4). The 
horizontdi layer forms the connection between the 
core flow and the no-slip and adiabatic condition at 
the horizontal wall. Similarly to the structure in the 
core, the isotherms and streamlines in the Navier 
Stokes solution become horizontal for Rtr --+ x_ . 

Because the horizontal wall is adiabatic. the hori- 
zontal layer is even isothermal (with a temperature 
below T,, in the horizontal ceiling layer). Considering 
the lr-velocity in Fig. S(a). the horizontal layer in the 
r-direction can be said to extend roughly from the 
horizontal wall up to the velocity maximum. As 
checked in Fig. 8(b). the r-coordinate and rc-velocity 

scale with HRu ‘;I6 and u,), respectively. It is remark- 

able that this velocity scale (u, = (y/jATv) ’ ‘) is inde- 
pendent of H. The mass that is transported through 
the horizontal layer is proportional to uoHRo ’ If’. 
whereas the mass through the core is proportional to 
u,,HRa- (‘I’. This implies that for an infinitely large 
Rayleigh number all the mass from the hot vertical 
boundary layer is transported to the cold vertical 
boundary layer via the core. This agrees with Gill’s 
assumptions about the asymptotic structure. 
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8. CONCLUSION 

The steady laminar Navier-Stokes solution for air 
and water in the square cavity heated from the vertical 
side and with an adiabatic floor and ceiling shows four 
different streamline patterns (topological structures), 
when the Rayleigh number is increased up to 10”. 
The last streamline pattern (Ra > 5 x 106) contains 
four asymptotic structures : a vertical boundary Layer 
along the heated wall, a core region, a comer region 
and a horizontal layer. 

For increasing Rayleigh number the core becomes 
thermally stratified and has horizontal streamlines. 
The vertical temperature gradient in the centre of the 
core scales with AT/H and is roughly twice as large 
for air than for water. The horizontal velocity in the 
core scales with (~/?ATv)“‘~Ru-‘~‘“. Comparison with 
the solution of the boundary-layer equations (using 
the large-Rayleigh-number temperature stratification 
in the core as a boundary condition) shows that for 
Ra -+ co the Navier-Stokes solution along the vertical 
wall converges to the boundary-layer solution. This 
means that the wall-heat transfer scales with 
(AZ’/H)Ra’@, the vertical velocity with (g/?ATH) ‘I* 
and the boundary-layer thickness with HRa- ‘14. 
Finite Rayleigh-number effects in the Navier-Stokes 
solution for the vertical layers are restricted to influ- 
ences in the comers. In the left upper comer the ver- 
tical boundary-layer solution hits the ceiling with a 
non-zero maximum speed. For air a vortex char- 
acterizes the process of bending the vertical layer to a 
horizontal layer. No scalings can be derived in the 
left upper corner, implying that full Navier-Stokes 
equations have to be used there. The horizontal layers 
along the horizontal walls are not described by bound- 
ary-layer equations. They have horizontal stream- 
lines and are isothermal. The y-distance to the hori- 
zontal wall scales with .HRu-~“~ and the horizontal 
velocity scales with (g~ATv) li3. 

The large-Rayleigh-num~r structures along the 
vertical walls and in the core, as calculated with the 
Navier-Stokes equations and the boundary-layer 

equations, agree with the asymptotic description pro- 
posed by Gill. 
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